X iv : a st ro - p h / 02 12 24 5 v 3 7 F eb 2 00 3 Submitted to Celestial Mechanics and Dynamical Astronomy Equations for the orbital elements : Hidden symmetry

نویسنده

  • Michael Efroimsky
چکیده

We revisit the Lagrange and Delaunay systems of equations for the orbital elements, and point out a previously neglected aspect of these equations: in both cases the orbit resides on a certain 9-dimensional submanifold of the 12-dimensional space spanned by the orbital elements and their time derivatives. We demonstrate that there exists a vast freedom in choosing this submanifold. This freedom of choice (=freedom of gauge fixing) reveals a symmetry hiding behind Lagrange’s and Delaunay’s systems, which is, mathematically, analogous to the gauge invariance in electrodynamics. Just like a convenient choice of gauge simplifies calculations in electrodynamics, so the freedom of choice of the submanifold may, potentially, be used to create simpler schemes of orbit integration. On the other hand, the presence of this feature may be a previously unrecognised source of numerical instability. We provide a practical example of a situation that cannot be correctly handled without the said gauge-type freedom taken into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : a st ro - p h / 02 12 24 5 v 4 1 0 Fe b 20 03 Submitted to Celestial Mechanics and Dynamical Astronomy Equations for the orbital elements : Hidden symmetry

We revisit the Lagrange and Delaunay systems of equations for the orbital elements, and point out a previously neglected aspect of these equations: in both cases the orbit resides on a certain 9-dimensional submanifold of the 12-dimensional space spanned by the orbital elements and their time derivatives. We demonstrate that there exists a vast freedom in choosing this submanifold. This freedom...

متن کامل

ar X iv : a st ro - p h / 03 07 13 0 v 1 7 Ju l 2 00 3 Submitted to ” Astronomy and Astrophysics ”

We summarise research reported in (Efroimsky 2002, 2003; Efroimsky & Goldreich 2003a,b) and develop its application to planetary equations in non-inertial frames. Whenever a standard system of six planetary equations (in the Lagrange, Delaunay, or other form) is employed, the trajectory resides on a 9(N-1)-dimensional submanifold of the 12(N-1)-dimensional space spanned by the orbital elements ...

متن کامل

X iv : a st ro - p h / 04 08 16 8 v 2 2 5 A ug 2 00 4 Submitted to “ Celestial Mechanics and Dynamical Astronomy ”

It was believed until very recently that a near-equatorial satellite would always keep up with the planet’s equator (with oscillations in inclination, but without a secular drift). As explained in Efroimsky and Goldreich (2004), this misconception originated from a wrong interpretation of a (mathematically correct) result obtained in terms of non-osculating orbital elements. A similar analysis ...

متن کامل

ar X iv : a st ro - p h / 02 12 24 5 v 8 1 9 M ay 2 00 3 astro − ph /

We revisit the Lagrange and Delaunay systems of equations for the orbital elements, and point out a previously neglected aspect of these equations: in both cases the orbit resides on a certain 9(N-1)-dimensional submanifold of the 12(N-1)-dimensional space spanned by the orbital elements and their time derivatives. We demonstrate that there exists a vast freedom in choosing this submanifold. Th...

متن کامل

ar X iv : a st ro - p h / 04 02 16 8 v 1 7 F eb 2 00 4 A search for wide ( sub ) stellar companions around extrasolar planet host stars

We present an overview of our ongoing systematic search for wide (sub)stellar companions around the stars known to host rad-vel planets. By using a relatively large field of view and going very deep, our survey can find all directly detectable stellar and massive brown dwarf companions (m>40 MJup) within a 1000 AU orbit.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009